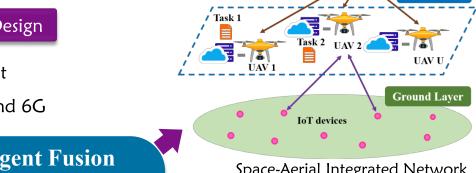


無線通訊暨訊號處理研究室

Wireless Communications & Signal Processing Lab

Webpage

Advisor


祁忠勇 教授 (Prof. Chong-Yung Chi) E-mail: cychi@ee.nthu.edu.tw

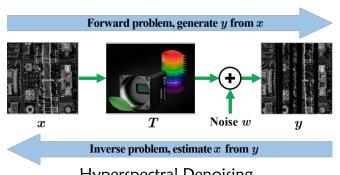
Office: Delta Building R966, Tel: 03-5731156

Wireless Communications: 5G Beyond and 6G System Design

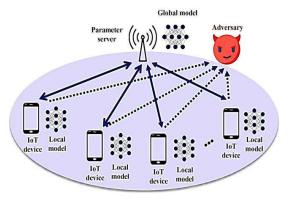
- Machine Learning for Intelligent Resource Management
- Enhanced Mobile Broadband (eMBB) in 5G Beyond and 6G
- Security and Privacy Protection
- Integrated Sensing and Communications

Intelligent Fusion CVXopt & AI

Space-Aerial Integrated Network


Satellite

Space Laver


Aerial Lave

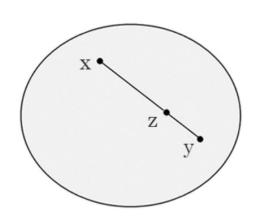
Big Data Analytics and Machine Learning

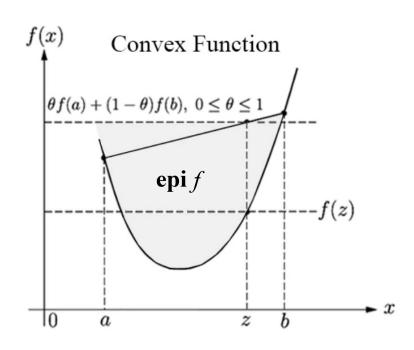
- Hyperspectral Unmixing, Denoising, Inpainting
- Graph-Based Learning
- Federated Learning
- Unsupervised learning

Hyperspectral Denoising

Federated Learning Framework

Introduction to CVXopt


Optimization Problem:


 $\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{x} \in \mathcal{C} \end{array}$

where $f(\mathbf{x})$ is the objective function and \mathcal{C} is the feasible set from which we intend to find an optimal solution \mathbf{x}^* (or called a **global optimizer**).

CVX set
$$\mathcal{C}$$
 (left): $\mathbf{z} = \theta \mathbf{x} + (1 - \theta) \mathbf{y} \in \mathcal{C}, \ \theta \in [0, 1], \ \forall \mathbf{x}, \mathbf{y} \in \mathcal{C}$
CVX function $f(x)$ (right): $f(z) \leq \theta f(a) + (1 - \theta) f(b), \ \theta \in [0, 1], \ \forall z \in [a, b]$

Convex set

Introduction to CVXopt & AI: Capacity Distinctions

Optimization Problem:

```
\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \mathbf{x} \in \mathcal{C} \end{array}
```

where $f(\mathbf{x})$ is the objective function and \mathcal{C} is the feasible set from which we intend to find an optimal solution \mathbf{x}^* (called a $global\ optimizer$).

- CVXopt problem: f(x) is a convex function and C is a convex set. Solving CVXopt problems has been a prevalent philosophy in sciences and engineering for decades.
- Strength: Powerful CVXopt theory and convex solvers (e.g., CVX or SeDuMi) available for obtaining an x*, along with insightful performance and convergence analyses.
- Weakness: Still hard to handle most NP-hard problems.

CVXopt & AI: Capability Distinctions

Artificial Intelligence (AI): A revolutionary **philosophy** for solving optimization problems

- **Strength:** Machine Learning (**ML**) and Deep Learning (**DL**) widely used Al techniques, *especially for applications lacking math models*.
- Big data collection required; pre-training always needed.
- High computing power required; time-consuming hyperparameter tuning.
- Weakness: Almost no tractable performance/convergence analysis.

CVXopt & AI:

- (a) Can they unitedly and jointly solve a problem?
- **(b)** Prospective benefits on performance and/or efficiency?

Ans: CVXopt-aided AI or AI-aided CVXopt or other smart fusion.

Funded PhD/Master/Postdoc positions at WCSP Lab NTHU

The Wireless Communication and Signal Processing (WCSP) Group (led by Prof. Chong-Yung Chi), National Tsing Hua University (NTHU), Hsinchu, Taiwan, is seeking talented and motivated Ph.D./Master students (funded) and post-doctoral researchers to pursue

Intelligent Fusion of Convex Optimization (CVXopt) & Artificial Intelligence (AI): CVXopt-aided AI or AI-aided CVXopt

for WCSP and Network applications as follows (but not limited by): **Wireless Communications:** Wireless Federated Learning (FL) and wireless space-aerial integrated network (SAIN).

Signal Processing: Deep Learning (DL) based hyperspectral imaging, graph based learning, and data security and privacy protection in FL.

For detailed information, please refer to the following link, <u>Google-Scholar</u> (Citation Statistics of Publications)

© NATIONAL TSING HUA UNIVERSITY